

Bilkent University

Senior Design Project
Project short-name: Neophyte

Low Level Design Report

Ali Soyaslan, Oğuz Liv, Umut Akös, Gülce Karaçal

Supervisor: Hali l Altay Güvenir

Jury Members: Uğur Güdükbay and Hamdi Dibeklioğlu

Progress Report

October 8, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS491/2.

Department of Computer Engineering

2

Contents

1 Introduction __ 3

1.1 Design Trade-Offs __ 4

 1.1.1 Functionality vs. Usability __ 4

 1.1.2 Security vs. Cost ___ 4

 1.1.3 Performance vs. Space ___ 5

1.2 Engineering Standards __ 5

1.3 Interface Documentation Guidelines___ 6

1.4 Definitions, Acronyms, and Abbreviations ______________________________________ 6

2 Packages __ 7

2.1 Client __ 7

 2.1.1 GameGraphics ___ 7

 2.1.2 ScreenController ___ 8

2.2 Server __ 9

 2.2.1 Logic __ 9

 2.2.2 Data __ 10

3 Class Interfaces __ 11

3.1 Client ___ 11

 3.1.1 GameGraphics __ 11

 3.1.2 ScreenController __ 16

3.2 Server ___ 20

 3.2.1 Logic ___ 20

 3.2.2 Data __ 23

4 References __ 25

3

1.0 Introduction

In a rapidly digitizing world, having technical skills is very crucial since, nowadays; almost

everything requires some form of programming. As technology has been developing, we have

become more dependent on it and use various technologies to accomplish specific tasks in our

daily lives. Technology is being implemented in almost every section of our lives and business

structures. This is the reason why, many countries such as England, Singapore, Estonia and US

have started programming education in early ages, because the sooner a person learns how to

create programs, the stronger their problem solving abilities get. This education also amplifies

their computational and analytical thinking skills. For instance, UK made the most ambitious

attempt to get kids coding, with changes to the national curriculum in 2013. ICT – Information

and Communications Technology – is out and replaced by a new “computing” curriculum

including coding lessons for children as young as five [1]. Such knowledge is important not only

to individual students‟ future career prospects, but also for their countries‟ economic

competitiveness and the technology industry‟s ability to find qualified workers [2].

However, it appears that Turkey is a little belated to educate children about programming

compared to other countries. According to International Computer and Information Literacy

Study (ICILS), who conducted among students between 6-15 years from all over the world in

2013, it has been acknowledged that only 1% of students from Turkey have advanced computer

knowledge. On the other hand, 35% of students from Korea, 34% of students from Australia and

33% of students from Poland have advanced knowledge about computers and programming [3].

In order to offer an effective and simple solution for this problem, the project Neophyte will be

proposed. With Neophyte, we aim to teach children how to code while making them entertained

by playing different kinds of games they like. Neophyte creates a platform where children can

interact with each other in an exciting way and improve their programming skills.

In this report, we aim to provide an overview of the low-level architecture and design of the

system we will develop. Firstly, the design trade-off, engineering standards and documentation

guidelines are described. Afterwards, the packages in our system and their functionalities are

4

described along with detailed class diagram views. Furthermore, interfaces of all classes in all

packages are included.

1.1 Design Trade-Offs

 1.1.1 Functionality vs. Usability

Functionality and usability are two main points that we focus on the design process of Neophyte.

Due to the fact that our application will be used by different people from young ages, making it

usable is crucial for us. The user interface should be user-friendly in this way; users can spend

their time, enjoying programming rather than struggling to figure out how to play the game while

writing code segments. On the other hand, Neophyte offers many functionalities such as writing

codes, making contacts with other users, participating in team competitions etc. For this reason,

functionality is also significant for our project. The main design goal of our system is providing

the maximum possible functionality with an easy-to-use interface to users as in most of the

promising software today. Thus, we will try to obtain a balance between functionality and

usability.

1.1.2 Security vs. Cost

 We will ask users to sign up and login to the program in order to use the application. In other

words, Neophyte is a platform in which users should first log in with their credentials. Users will

be allowed to change their personal information by modifying personal settings. This is the

reason why, security is one of the key concerns of Neophyte. All users register to the system

with a username/email and a password. The user information will only be shown to the user only.

These data will be secured by using third party security system. While we are trying to achieve

this, we have to consider the cost of these operations as well. Thus, we will try to get high

security with a low cost as much as possible.

5

 1.1.3 Performance vs. Space

The large scale of data also introduces a lot of possible delay which can be as a result of the

requirement of saving the data to the servers. The scores should be constantly stored as well as

details about personal information. Therefore, this data should be safely stored in the servers

continuously and should be updated correctly. This naturally increases the processing time and

slows down the system. In order to ensure fast response time, we will be saving all the data in the

server time. In this way, we will ensure that the system is highly responsive to users anytime. All

connections and data exchanges with the server will be handled in background threads. This way,

we will be able to keep the system fast while managing lots of data at the same time.

Another aspect to this topic is that as the game will be accessed through the browser, the memory

usage is a great deal for us. Many browsers these days do not support more than 2 GB of

memory usage except Google Chrome. Anyhow, we still should not use that much of memory as

a single application. As a result, we should keep the per-tab memory usage at 800 MB -

1200MB.

1.2 Engineering Standards

In this report, UML design principles are used in the description of class interfaces, diagrams,

scenarios and use cases, subsystem compositions, and hardware-software components depictions.

UML is a commonly used standard that allows simpler description of the components of a

software project. The reports follow the IEEE citation guidelines for the references since they are

easy to understand and very commonly used.

6

1.3 Interface Documentation Guidelines

This report follows the convention where all class names are singular and named with the

standard „ClassName‟ form. The variable and method names follow the same convention

„variableName‟ and „methodName()‟. The class descriptions follow the order where the class

name comes first, the attributes follow, and lastly the methods are listed. After the class names, a

brief description and function of the class can be found. The detailed outline is provided below:

Class Name

➢ Description of class

 Attributes

➢ Attribute name

➢ Type of attribute

Methods

➢ Method name

➢ Parameters

➢ Return value

1.4 Definitions, Acronyms, and Abbreviations

Server: The part of the system responsible from logical operations, scheduling, and data

management

UI: User Interface

Client: The part of the system which users interact with

7

2.0 Packages

Neophyte follows a Client-Server architectural style in order to effectively respond/process

concurrent user requests. The web application will constitute the client part of the system. The

client requests services from the server to function and to respond the needs of the users.

The system is composed of two main packages as client and server. In the client package, there

are two subpackages called GameGraphics and ScreenController. In the server package, there are

two subpackages called Logic and Data.

2.1 Client

2.1.1 GameGraphics

GameGraphics package contains the classes related to Graphical User Interface.

8

Graphics: This class generates the visuals of the game, characters, map, static and dynamic

items.

GameObjects: This class is responsible for loading and locating game objects.

Player: This class is responsible for providing dynamic information of players.

Obstacles: This class represents graphical obstacles objects that players will encounter when

they reach advanced levels of games.

Collectibles: This class represents graphical collectibles objects that players will encounter

during the game.

Map: This class represents the map items with graphical materials which will be generated by

the game manager as the player progresses through the game.

MissionGraphics: This class loads the suitable graphics for specified level and game type.

GameManager: This class loads appropriate graphics according to player, players‟ levels and so

on. Mainly, this class stays between game logic and game graphics. It connects suitable parts of

both classes in order to make them logical and user friendly.

Animations: This class is responsible for game animation designs.

2.1.2 ScreenController

9

The ScreenController package handles the client functions and requests sent via the

GameGraphics package.

LoginSc: This class manages the login operation of the user. At the initial startup, it is the class

that user will encounter its rendered instance. It asks for basic authentication information.

HomeSc: This class manages the home screen of the program.

InfoSc: This class represents the information about a single player, multiplayer or teams.

MessageSc: This class manages direct messages sent and received among users.

ScreenControllerSc: This class manages the user interface for the main screen. All of the final

outputs related to graphics are shown with this class. This class also acts as a bus to reach other

classes within ScreenController.

 DashboardSc: This class manages the screen that shows scores of users and their rankings

among them.

2.2 Server

2.2.1 Logic

The logic package is responsible for processing requests from given clients and sending the

appropriate responses.

10

Compiler: This class provides services to compile users‟ codes and reports appropriate results

according to game logic.

GameLogic: This class provides game logic for levels, players, as well as game graphics.

ClientFetcher: This class is for validating and for verifying the users for the game.

ConnectionController: This class represents connection logic for the game and users.

DataFlowHandler: This class represents services for messaging between users and also handles

team activities such as creating a new team.

2.2.2 Data

Data package is responsible for data-related operations. Database management system (DBMS)

resides in data tier and keeps the data of our application in server-side.

User: This class provides static player information such as player ID, username, level, points etc.

Profile: This class represents profile information of users.

Team: This class represents static team information such as team ID, team size, player ID etc.

11

3.0 Class Interfaces

 3.1 Client

 3.1.1 GameGraphics

Class Graphics

This class generates the visuals of the game, characters, map, static and dynamic items.

Attributes

int x

int y

Screen Sc

Methods

void moveUp(): This method calculates movements according to x,y variables and moves up.

void moveDown():This method calculates movements according to x,y variables and moves

down.

void moveLeft():This method calculates movements according to x,y variables and moves left.

void moveRight(): This method calculates movements according to x,y variables and moves

right.

void draw(): This method draws specific objects on screen canvas according to x,y variables.

12

Class GameObjects

This class is responsible for loading and locating game objects.

Attributes

int level

int type

Methods

void loadObject(int,int): This method is a helper function which is going to be overridden by its

children classes. Basically, this method provides services for loading graphics of a specific

object in specified game level and specified game object such as collectibles or players.

void locateObject():This method provides services for where to load related graphics of the

object in the game map. Since different game objects can be on different places on the map, this

is just a helper method for further objects.

Class Player

This class is responsible for providing dynamic information of players.

Attributes

int player_id

Methods

13

void loadGraphics(): This method loads game graphics of the player.

void movePlayer(): This method moves the player according to the user input.

void loadLevel(): This method loads the level of player.

Class Obstacles

This class represents graphical obstacles objects that players will encounter when they reach

advanced levels of games.

Attributes

int level

Methods

void loadObstacles(int,int): This method loads obstacles according to the player‟s coordinates.

void locateObstacles(int): This method locates obstacles according to the level of the player.

int obstacleType(int): This method represents the kind of obstacles that the player will encounter.

14

Class Collectibles

This class represents graphical collectibles objects that players will encounter during the game.

Attributes

int level

 Methods

void loadCollectibles(int,int): This method loads collectibles according to the player‟s

coordinates.

void locateCollectibles(int): This method locates collectibles according to the level of the player.

int collectibleType(int): This method represents the kind of collectibles that the player will

encounter.

Class Map

This class represents the map items with graphical materials which will be generated by the

game manager as the player progresses through the game.

Attributes

int level

int playerType

15

int gameType

Methods

void loadMap(int,int,int): This method loads the game map according to the level, to the player

type and to the game type.

Class MissionGraphics

This class loads the suitable graphics for specified level and game type.

Attributes

int gameType

int level

Methods

void loadMissionGraphics(int,int): This method loads graphics according to specified mission

and to player level.

Class GameManager

This class loads appropriate graphics according to player, players‟ levels and so on. Mainly, this

class stays between game logic and game graphics. It connects suitable parts of both classes in

order to make them logical and user friendly.

16

Attributes

Player p

MissionGraphics mg

map m

Collectibles c[]

Obstacles[] o[]

Methods

loadGraphics(Player, Map,MissionGraphics) : This methods draws and loads layout graphics for

specified mission and specified player.

loadColandObst(Collectibles[], Obstacles[]): This method draws and loads graphics for game

add-ons such as collectible power ups and annoying obstacles.

loadGameGraphics(): This method loads the graphics of whole game components with the help

of loadGraphics() and loadColandObst() methods.

3.1.2 ScreenController

Class LoginSc

This class manages the login operation of the user. At the initial startup, it is the class that user

will encounter its rendered instance. It asks for basic authentication information.

Attributes

string username

17

string password

connection conn

Methods

string getUsername(): This method simply gets the username of the user.

string getPassword():This method simply gets the password of the user.

boolean reportLoginStatus(): This method represents whether the login operation is successful or

not.

void login(): This method is responsible for login operation.

void connectionEstablish(): This method is responsible for establishing the connection.

Class HomeSc

This class manages the home screen of the program.

Attributes

Button message

Button dashboard

Button singleplayer

Button multiplayer

18

Button info

Methods

void showMessage(): This method opens messaging page for users in order to see his/her

messages from different players of the game.

void playSingle(): This method gives the signal of user‟s request that a single player game and its

graphics.

void showDashboard(): With this method, scores and rankings of players are shown on the home

screen.

void showInfo():This method loads the credit page.

void playMulti():This method gives signal for multiplayer game request.

Class InfoSc

This class represents the information about a single player, multiplayer or teams.

Methods

void infoSingle():This method loads the page that has information about how to play single

player game mode.

void infoMulti():This method loads the information page that has info about how to play

multiplayer mode of the game.

void credits():This method loads the credits page.

19

Class MessageSc

This class manages direct messages sent and received among users.

Attributes

String[] Messages

Methods

void showMessage(): This method is responsible for showing direct messages between users.

void showSender(): This method is responsible for showing senders of direct messages.

Class ScreenControllerSc

This class manages the user interface for the main screen. All of the final outputs related to

graphics are shown with this class. This class also acts as a bus to reach other classes within

ScreenController.

Attributes

Screen sc

Methods

void loadPlayer(): This method basically loads the player.

void loadCredits(): This method is for loading players‟ credits.

20

void loadMessages(): This method is for loading direct messages among users.

void loadHome(): This method is for loading the home screen.

void loadDashboard(): This method is for loading game rankings of players.

Class DashboardSc

This class manages the screen that shows scores of users and their rankings among them.

Attributes

Player players[]

Methods

int getPoints(): This method is responsible for getting scores of players.

void sortPlayers(): This method sorts players‟ scores in descending order.

void showPlayer(): This method shows players ranking.

3.2 Server

 3.2.1 Logic

Class Compiler

 This class compiles and reports the code according to players‟ actions in the game.

21

Attributes

int level

int gameType

Methods

string getCode(): This method gets the generated code from the user‟s reactions in the game.

void compile(): This method compiles the code that has been gathered from user‟s actions.

string sendCode(): This method sends the code to be compiled to the compile() method.

Class GameLogic

 This class has the game logic according to game levels, game types and gameplay types.

Attributes

int player_id

int gameType

int level

Methods

void playGame(int,int): This method loads the appropriate game logic according to requested

game type and level of the game type.

22

void Game(int,int,int): This method loads the suitable game logic according to specific users

with the help of playeGame() method.

void play(int,int): This method starts executing game logic.

Class ClientFetcher

 To make data flow suitable in the server, we need to know that which data goes to which user.

This class handles this problem.

Attributes

 int player_id

Methods

 void getData(int): This method moves the appropriate data to specified user.

Class ConnectionController

 This class manages control of connection to the server.

Attributes

 Connection connect

Methods

 void connect():This method establishes database connection.

23

 int status():This method reports status of connection.

Class DataFlowHandler

 This class manages the data flow throughout the server.

Methods

 boolean Send():This method reports if data flow works correct or not.

3.2.2 Data

Class User

This class provides static player information such as player ID, username, level, points etc.

Attributes

 int player_id

 string username

 string password

 int account_status

 int level

 int points

24

Class Profile

 This class represents profile information of users.

Class Team

 This class represents static team information such as team ID, team size, player ID etc.

Attributes

 int team_id

 int player_id

 int team_size

 int team_points

 int team_level

25

4.0 References

[1] “Coding at school: a parent's guide to England's new computing curriculum,”

https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-

programming Accessed February 17, 2018.

[2] “Adding Coding to the Curriculum,” https://www.nytimes.com/2014/03/24/ world/europe/

adding-coding-to-the-curriculum.html Accessed February 17, 2018.

[3] “İlkokuldan itibaren Kodlama dersi geliyor!,” http://www.sozcu.com.tr/egitim/ ilkokuldan-

itibaren-kodlama-dersi-geliyor.html Accessed February 17, 2018.

https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.theguardian.com/technology/2014/sep/04/coding-school-computing-children-programming
https://www.nytimes.com/2014/03/24/%20world/europe/%20%20%20adding-coding-to-the-curriculum.html
https://www.nytimes.com/2014/03/24/%20world/europe/%20%20%20adding-coding-to-the-curriculum.html
http://www.sozcu.com.tr/egitim/%20ilkokuldan-itibaren-kodlama-dersi-geliyor.html
http://www.sozcu.com.tr/egitim/%20ilkokuldan-itibaren-kodlama-dersi-geliyor.html

